A. M. Makarov, V. V. Leonov, V. I. Dubovik, and G. N. Shvedova

The single-phase Stefan problem is considered with boundary conditions of the second and of the third kind. An iteration scheme is developed for solving the nonlinear integrodifferential equation.

An analysis of the freezing-process dynamics in the case of a warm liquid at a cold solid wall reduces to a problem in which the boundary for the equation of heat conduction is unknown (the Stefan problem). An analytical solution of the Stefan problem in a sufficiently general form involves vast difficulties of a mathematical nature. Several approaches to the solution of this problem are known: a reduction of the Stefan problem to various functional systems of equations [1, 2, 3, 4], a solution in series in "instantaneous" or in "local" eigenfunctions of the problem [5, 6, 9], and the method of integral transformations [7]. None of these methods is very useful for obtaining specific results within a finite interval of the time variable.

The problem of a warm liquid freezing at an isothermal cold wall (boundary condition of the first kind) has been solved in [8] by the method of successive approximations. In this article we will use the iteration method for solving the Stefan problem with boundary conditions of the second and the third kind. Let a liquid filling the half-space x > 0 be maintained at a constant temperature T_e higher than the phase transition temperature T_f . Beginning at time t = 0, a certain temperature field is maintained on an infinitely large plate at x = 0. On plane x = 0 there forms ice of density ρ and latent heat of fusion L. The thickness of the frozen layer $x = \delta(t)$ and the temperature distribution T(x, t) are the unknown functions here. With these assumptions, then, we have the single-phase Stefan problem:

$$pc \ \frac{\partial T}{\partial t} = k \frac{\partial^2 T}{\partial x^2} \text{ in } D, \tag{1}$$

$$k \frac{\partial T}{\partial x}\Big|_{x=0} = F[t, T(0, t)], t > 0,$$
⁽²⁾

$$T|_{x=\delta(t)} = T_f = \text{const},\tag{3}$$

$$k \frac{\partial T}{\partial x}\Big|_{x=\delta(t)} = h_e (T_e - T_f) + \rho L \frac{d\delta}{dt}, \quad t > 0,$$
(4)

$$\delta(0) = 0. \tag{5}$$

Here F[t, T(0, t)] is a certain function of the given arguments and $D = \{x, t; 0 < x < \delta(t), 0 < t < t_0 < \infty\}$ is the open-ended region where a solution is to be obtained. The second condition (4) at the unknown boundary makes allowance for the effect of convective heat transfer between warm liquid and layer of ice on the freez-ing rate.

1. Freezing of a Liquid at a Flat Wall from Which a

Certain Heat Flux is Extracted

In this case function F[t, T(0, t)] becomes

$$F[t, T(0, t)] = q_{ip} = \text{const},$$
(1.1)

where q_W is the heat flux extracted from plane x = 0.

N. E. Bauman Technical College, Moscow. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 21, No. 3, pp. 537-546, September, 1971. Original article submitted December 8, 1970.

• 1974 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

	1	Δ								
	α, β	0,1	0,2	0,3	0,4	0,5	0,6	0.7	0,8	0,9
τ1	α=0,03	0,1011	0,2026	0,3043	0,4054	0,5088	0,6114	0,7144	0,8176	0,9213
τ_2	β=0,01	0,1011	0,2026	0,3043	0,4064	0,5088	0,6114	0,7144	0,8176	0,9211
τ		0,1011	0,2026	0,3043	0,4064	0,5087	0,6114	0,7143	0,8176	0,9211
τ_1	α=0,6	0,1040	0,2141	0,3303	0,4525	0,5808	0,7151	0,8555	1,0020	1,1545
τ_2	β=0,01	0,1039	0,2132	0,3275	0,446 ə	0,5692	0,6961	0,8265	0,9605	1,0977
τ_3		0;1019	0,2103	0,3251	0,4459	0,5726	0,7084	0,8422	0,9845	1,1312
τ_1	a=0,6	0,2503	0,5015	.0,7533	1,0060	1,2593	1,5135	1,7683	2,0240	2,2803
τ2	β=0,6	0,2503	0,5015	0,7533	1,0059	1,2593	1,5134	1,7682	2,0238	2,2801
τ_3		0,2503	0,5014	0,7532	1,0058	1,2592	1,5132	1,7681	2,0236	2,2800
	1	1				1	ł		I	1

TABLE 1. Results of the First, the Second, and the Third Approximation for Function $\tau = \tau(\Delta)$

The solution to problem (1)-(5) with condition (1.1) will now be

$$k\frac{\partial T}{\partial x} = k\frac{\partial T}{\partial x}\Big|_{x=0} + \rho c \int_{0}^{x} \frac{\partial T}{\partial t} dx$$

With conditions (2) and (1,1) we have

$$k\frac{\partial T}{\partial x} = q_w + \rho c \int_0^x \frac{\partial T}{\partial t} dx.$$
 (1.2)

Writing Eq. (1.2) for $x = \delta(t)$ and taking into account condition (4), we will obtain after a few simple transformations:

$$\frac{d\delta}{dt} = \frac{q_w - h_e(T_e - T_f)}{\rho L} + \frac{c}{L} \int_0^0 \frac{\partial T}{\partial t} dx.$$
(1.3)

We then integrate Eq. (1.2) over the variable x from x to $\delta(t)$ and, together with condition (3), this yields

$$T = T_f - \frac{q_w}{k} (\delta - x) - \frac{\rho c}{k} \int_{x}^{\delta(t)} \int_{0}^{x} \frac{\partial T}{\partial t} dx dx.$$
 (1.4)

We note that $\partial/\partial t = \partial/\partial \delta \cdot d\delta/dt$, where $d\delta/dt$ is independent of the space variable.

In this case Eq. (1.3) yields

$$\frac{d\delta}{dt} = \frac{q_w - h_e (T_e - T_f)}{\rho L \left(1 - \frac{c}{L} \int_0^\delta \frac{\partial T}{\partial \delta} dx\right)}.$$
(1.5)

Taking into account (1.5), we can write Eq. (1.4) as

$$T = T_f - \frac{q_w}{k} (\delta - x) - \frac{c \left[q_w - h_e (T_e - T_f)\right]}{kL \left(1 - \frac{c}{L} \int_0^{\delta} \frac{\partial T}{\partial \delta} dx\right)} \int \int_0^{\infty} \frac{\partial T}{\partial \delta} dx dx.$$
(1.6)

The right-hand side of Eq. (1.5) is a function of δ and does not explicitly depend on t, which, together with condition (5), allows us to rewrite the expression for $t = t(\delta)$ as

$$t = \frac{\rho L}{q_{w} - h_{e} (T_{e} - T_{f})} \left[\delta - \frac{c}{L} \int_{0}^{0} \int_{0}^{0} \frac{\partial T}{\partial \delta} dx dx \right].$$
(1.7)

A solution to the integrodifferential equation (1.6) can be obtained by the method of successive approximations, whereupon expression (1.7) will yield the time during which an ice layer of thickness δ freezes at the infinitely large plate x = 0. Further calculations will be more conveniently performed with dimensionless quantities. Let

$$\theta = \frac{T - T_f}{T_e - T_f}; \ z = \frac{k(T_e - T_f)}{q_w}; \quad \Delta = \frac{\delta}{x}; \quad \xi = \frac{x}{z};$$
$$\tau = \frac{q_w}{z\rho L}; \quad \alpha = \frac{c(T_e - T_f)}{L}; \quad \beta = \frac{h_e(T_e - T_f)}{q_w}.$$

Equations (1.6) and (1.7) become now (1.8) and (1.9) respectively:

$$\theta = \xi - \Delta + \frac{\alpha \left(1 - \beta\right) \int_{\xi}^{\Delta} \int_{0}^{\xi} \frac{\partial \theta}{\partial \Delta} d\xi d\xi}{1 - \alpha \int_{0}^{\Delta} \frac{\partial \theta}{\partial \Delta} d\xi},$$
(1.8)

$$\tau = \frac{1}{1-\beta} \left(\Delta - \alpha \int_{0}^{\Delta} \int_{0}^{\Delta} \frac{\partial \theta}{\partial \Delta} d\xi d\Delta \right).$$
(1.9)

As the zeroth approximation we take

$$\theta_0 = \xi - \Delta, \tag{1.10}$$

$$\tau_0 = \frac{\Delta}{1-\beta},\tag{1.11}$$

which corresponds to ice with an infinitesimal specific heat. Inserting (1.10) into the right-hand side of Eqs. (1.8) and (1.9), we obtain

$$\theta_1 = \xi - \Delta + \frac{\alpha \left(1 - \beta\right) \left(\Delta^2 - \xi^2\right)}{2 \left(1 + \alpha \Delta\right)}, \qquad (1.12)$$

$$\tau_{1} = \frac{\Delta}{1-\beta} \left(1 + \frac{\alpha \Delta}{2} \right). \tag{1.13}$$

Continuing the iteration process, we will obtain after the second approximation:

$$\theta_{2} = \xi - \Delta + \alpha \left(1 - \beta\right) \frac{A_{4}\xi^{4} + A_{3}\xi^{2} + A_{2}\xi + A_{1}}{1 + \alpha A_{2}},$$
(1.14)

$$\tau_2 = \frac{\Delta}{1-\beta} \left(1 + \frac{\alpha \Delta}{2} \right) - \frac{\alpha^2 \Delta^3}{3(1+\alpha \Delta)}, \qquad (1.15)$$

where

$$\begin{split} A_1 &= \frac{\Delta^2}{2} \left[-1 + \alpha \left(1 - \beta\right) \frac{\Delta \left(1 + \frac{3}{4} \alpha \Delta\right)}{(1 + \alpha \Delta)^2} \right], \\ A_2 &= \Delta - \alpha \left(1 - \beta\right) \frac{\Delta \left(2 + \alpha \Delta\right)}{4 \left(1 + \alpha \Delta\right)^2}, \\ A_3 &= -\frac{1}{2} + \alpha \left(1 - \beta\right) \frac{\Delta \left(2 + \alpha \Delta\right)}{4 \left(1 + \alpha \Delta\right)^2}, \quad A_4 &= \frac{\alpha^2 \left(1 - \beta\right)}{24 \left(1 + \alpha \Delta\right)^2}. \end{split}$$

Since the expression for θ_3 is rather unwieldy, we will show only the expression for τ_3 :

$$\tau_{3} = \frac{\Delta}{1-\beta} - \frac{\alpha}{1-\beta} \int_{0}^{\Delta} \left\{ -x + \alpha \left(1-\beta\right) \left[\frac{A_{4}' \frac{x^{5}}{5} + A_{3}' \frac{x^{3}}{3} + A_{2}' x^{2} + A_{1}' x}{1 + \alpha A_{2}} - \frac{\alpha A_{2}' \left(A_{4} \frac{x^{5}}{5} + A_{3} \frac{x^{3}}{3} + A_{2} x^{2} + A_{1} x\right)}{(1 + \alpha A_{2})^{2}} \right] \right\} dx, (1.16)$$

where A' = dA/dx.

The convergence of the iteration process is easily established by an analysis of the results in Table 1, where the numerical values for the first, the second, and the third approximation are given. The numerical solutions to the problem for several specific values of the governing parameters are given in Table 2.

- 00	usij									
						Δ				
α	β	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
0,05	0,01	0,1012	0,2029	0,3052	0,4079	0,5112	0,6149	0,7191	0,8239	0,9291
	0,1	0,1113	0,2232	0,3357	0,4487	0,5623	0,6764	0,7911	0,9063	1,0220
	0,2	0,1252	0,2511	0,3777	0,5048	0,6326	0,7610	0,8900	1,0196	1,1498
	0,3	0,1431	0,2870	0,4316	0,5769	0,7230	0,8697	1,0171	1,1653	1,3141
	0,4	0,1670	0,3349	0,5036	0,6731	0,8435	1,0147	1,1867	1,3595	1,4462
	0,5	0,2004	0,4018	0,6043	0,8077	1,0122	1,2176	1,4240	1,6314	1,8398
	0,6	0,2499	0,5023	0,7554	1,0099	1,2652	1,5220	1,7801	2,0393	2,2998
0,2	0,01	0,1018	0,2058	0,3117	0,4196	0,5294	0,6412	0,7548	0,8704	0,9875
	0,1	0,1120	0,2263	0,3429	0,4616	0,5824	0,7054	0,8304	0,9545	1,0865
	0,2	0,1261	0,2547	0,3857	0,5193	0,6553	0,7936	0,9343	1,0773	1,2226
	0,3	0,1441	0,2911	0,4409	0,5935	0,7489	0,9071	1,0680	1,2315	1,3976
	0,4	0,1681	0,3396	0,5144	0,6925	0,8738	1,0584	1,2461	1,4370	1,6309
	0,5	0,2017	0,4075	0,6173	0,8310	1,0487	1,2702	1,4956	1,7247	1,9576
	0,6	0,2522	0,5094	0,7716	1,0388	1,3109	1,5879	1,8697	2,1563	2,4476
0,6	0,01	0,1019	0,2103	0,3251	0,4459	0,5726	0,7048	0,8422	0,9844	1,1312
	0,1	0,1125	0,2321	0,3585	0,4916	0,6311	0,7767	0,9281	1,0849	1,2470
	0,2	0,1270	0,2618	0,4043	0,5543	0,7113	0,8754	1,0460	1,2230	1,4059
	0,3	0,1455	0,3000	0,4630	0,6346	0,8143	1,0020	1,1974	1,4002	1,6101
	0,4	0,1702	0,3507	0,5411	0,7415	0,9514	1,1707	1,3991	1,6363	1,8822
	0,5	0,2046	0,4215	0,6503	0,8909	1,1431	1,4066	1,6812	1,9667	2,2627
	0,6	0,2562	0,5275	0,8137	1,1147	1,4303	1,7601	2,1041	2,4619	2,8334

TABLE 2. Freezing Time for an Ice Layer of Thickness Δ (q_W = const)

2. Freezing of a Liquid at a Convectively Cooled

Flat Wall

Beginning at time t = 0, let the infinitely large plate x = 0 be sprayed with a coolant the temperature of which, $T_0 < T_f$, is constant. The coefficient of heat transfer h_W between the cooled wall and the heat carrier will also be assumed constant, and the thermal resistance of the plate will be considered negligibly low. Function F[t, T(0, t)] then becomes

$$F[t, T(0, t)] = h_w [T(0, t) - T_0].$$
(2.1)

The procedure for solving problem (1)-(5) with condition (2.1) is in many aspects analogous to the procedure followed in the preceding case and, therefore, we will omit here the intermediate steps and will show the respective final integrodifferential equation of the temperature distribution in a frozen layer as well as the expression for the time after which an ice layer has attained a specified thickness:

$$\theta \left(\xi, \Delta\right) = \gamma \left[1 + \frac{\alpha - \gamma}{\gamma} \xi\right] + (\alpha - \gamma) (1 - \Delta) \frac{1 + \frac{\alpha - \gamma}{\gamma} \xi - \varphi \left[\int_{0}^{\Delta} \frac{\partial \theta}{\partial \Delta} d\xi + \frac{\alpha - \gamma}{\gamma} \int_{0}^{\xi} \int_{\xi}^{\Delta} \frac{\partial \theta}{\partial \Delta} d\xi d\xi\right]}{1 + \frac{\alpha - \gamma}{\gamma} \Delta - \varphi \left[\int_{0}^{\Delta} \frac{\partial \theta}{\partial \Delta} d\xi + \frac{\alpha - \gamma}{\gamma} \int_{0}^{\Delta} \int_{\xi}^{\Delta} \frac{\partial \theta}{\partial \Delta} d\xi d\xi\right]}, \qquad (2.2)$$
$$\tau = \frac{1}{\gamma \varphi} \int_{0}^{\Delta} \frac{1 + \frac{\alpha - \gamma}{\gamma} \Delta - \varphi \left[\int_{0}^{\Delta} \frac{\partial \theta}{\partial \Delta} d\xi + \frac{\alpha - \gamma}{\gamma} \int_{0}^{\Delta} \int_{\xi}^{\Delta} \frac{\partial \theta}{\partial \Delta} d\xi d\xi\right]}{1 - \Delta} d\Delta, \qquad (2.3)$$

where

$$\theta = \frac{T - T_0}{T_e - T_f}; \quad \tau = -\frac{h_w^2}{\rho c k} t; \quad \xi = \frac{x}{\delta_s};$$

$$\delta_s = \frac{k}{h_w} \left(\frac{h_w}{h_e} \cdot \frac{T_f - T_0}{T_e - T_f} - 1 \right); \quad \Delta = \frac{\delta}{\delta_s};$$

$$\alpha = \frac{T_f - T_0}{T_e - T_f}; \quad \gamma = \frac{h_e}{h_w}; \quad \varphi = \frac{c \left(T_e - T_f\right)}{L}.$$

In order to obtain the zeroth approximation, we set $\partial \theta / \partial \Delta = 0$, corresponding to ice with almost zero specific heat. We then have

ooled Wall	
Convectively C	
ata	
s d	
of Thicknes	
Layer (
Ice	
î an	
Time for	
Freezing	
TABLE 3.	

					annual data annual annual annual annual annual					
γ, Φ	8	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
$\gamma = 0,5$ $\varphi = 0,2$	10	2,7676 4,7406 6,4713	9,5109 16,3135 23,2549	21,2267 36,8348 53,6812	$\begin{array}{c} 39,5394\\ 69,4214\\ 102,6488\end{array}$	66,9805 118,9403 177,9317	107,778 193,587 292,376	169,807 308,836 470,436	270,541 499,839 767,586	464,269 881,776 1365,614
$\substack{\gamma=0,5\\ \phi=0,4}$	10 15 20	1,7092 3,1571 4,5503	6,0883 11,1971 16,7947	13,83 3 2 25,7071 39,3810	26,1096 49,1059 76,3240	44,7462 85,1771 183,8890	72,7968 140,294 222,626	115,951 226,493 362,454	186,833 371,113 359,861	324,673 663,737 1079,37
$\substack{\gamma=1,0\\ \phi=0,2}$	10 15 20	0, 9794 1,5454 2,0196	3,0068 4,8517 6,6958	6,3063 10,4343 14,8326	11,2744 19,0611 27,6490	18,5395 31,9441 47,0615	29, 1561 51, 1300 76, 3020	45,0908 80,4855 121,474	70,7091 128,796 153,742	119, 577 224, 852 346, 661
$\gamma = 1, 0$ $\varphi = 0, 4$	10 15 20	0,5852 0,9991 1,3836	1,8883 3,2858 4,7883	4,0650 7,2357 10,8359	7,3980 13,4409 20,5156	12,3395 22,8423 35,3886	19,6503 37,0307 58,0897	30,7505 59,0129 93,5968	48,793 95,621 153,219	83,579 169,245 274,017
$\gamma = 1, 5$ $\varphi = 0, 2$	10 15 20	0,5551 0,8342 1,0599	$\begin{array}{c}1,5943\\2,4712\\3,3343\end{array}$	3,2118 5,1402 7,1737	5,5802 9,1766 13,1125	8,9765 15,1161 21,9984	13,8678 23,8664 35,2661	21,1261 37,1443 55,6269	32,6887 58,8523 89,2423	54,5771 101,779 156,303
$\gamma = 1, 5$ $\phi = 0, 4$	20210	0,3240 0,5264 0,7093	$\begin{array}{c} 0,9831\\ 1,6494\\ 2,3567\end{array}$	2,0437 3,5340 5,2091	3,6288 6,4378 9,6079	5,9373 10,7758 16,5131	9,3055 17,2530 26,8237	$\begin{array}{c} 14,3626\\ 272037\\ 42,8403\end{array}$	22,5068 43,6621 69,5872	38,0849 76,5720 123,529

$$\theta_{0} = \gamma \left[1 + \frac{\alpha - \gamma}{\gamma} \xi \right] + (\alpha - \gamma) (1 - \Delta) \frac{1 + \frac{\alpha - \gamma}{\gamma} \xi}{1 + \frac{\alpha - \gamma}{\gamma} \Delta}, \qquad (2.4)$$

$$\tau_0 = -\frac{\alpha}{\varphi \gamma^2} \left[\ln \left(1 - \Delta \right) + \frac{\alpha - \gamma}{\alpha} \Delta \right].$$
(2.5)

The first approximation yields:

$$\theta_{1} = \gamma + (\alpha - \gamma) \xi + (\alpha - \gamma) (1 - \Delta) \frac{1 + \frac{\alpha - \gamma}{\gamma} \xi - \gamma \Phi(\Delta, \xi)}{1 + \frac{\alpha - \gamma}{\gamma} \Delta - \varphi \Phi(\Delta, \Delta)},$$
(2.6)

$$\tau_{1} = \frac{1}{\gamma \varphi} \int_{0}^{\Delta} \frac{\left\{1 + \frac{\alpha - \gamma}{\gamma} \Delta - \varphi \left[A\Delta \left(1 + \frac{\alpha - \gamma}{2\gamma} \Delta\right) + \frac{\alpha - \gamma}{2} A\Delta^{2} \left(\frac{1}{2} - \frac{\alpha - \gamma}{3\gamma} \Delta\right)\right\} d\Delta}{1 - \Delta}, \quad (2.7)$$

where

$$A = -\alpha \frac{\alpha - \gamma}{\gamma} \left(1 - \frac{\alpha - \gamma}{\gamma} \Delta \right)^{-2},$$

$$\Phi(\Delta, \xi) = A \left\{ \Delta + \frac{\alpha - \gamma}{2\gamma} \Delta^2 + \frac{\alpha - \gamma}{\gamma} \left(\Delta + \frac{\alpha - \gamma}{2\gamma} \Delta^2 \right) \xi - \frac{\alpha - \gamma}{2\gamma} \xi^2 - \left(\frac{\alpha - \gamma}{\gamma} \right)^2 \frac{\xi^3}{6} \right\}.$$

Since the expression for θ_2 is very unwieldy, we will show only the expression for τ_2 :

$$\tau_{2} = \frac{1}{\gamma \varphi} \int_{0}^{\Delta} \frac{1 + \frac{\alpha - \gamma}{\gamma} \Delta - \varphi \left(J_{1} + \frac{\alpha - \gamma}{\gamma} J_{2}\right)}{1 - \Delta} d\Delta, \qquad (2.8)$$

where

$$\begin{split} J_1 &= \frac{\gamma - \alpha}{q} + \frac{(\alpha - \gamma)(1 - \Delta)}{q^2} \left(\varphi B - \frac{\alpha - \gamma}{\gamma}\right) \\ &\times \left(\Delta + \frac{\alpha - \gamma}{2\gamma} \Delta^2 - \varphi A C_1\right) - \frac{\varphi (\alpha - \gamma)(1 - \Delta)}{q} \\ &\times \left[A' C_1 + A \left(\Delta + \frac{\alpha - \gamma}{\gamma} \Delta^2\right) + \frac{\alpha - \gamma}{\gamma} \left(1 + \frac{\alpha - \gamma}{\gamma} \Delta\right) \frac{\Delta^2}{2}\right]; \\ M &= \frac{\Delta^3}{2} + \frac{\alpha - \gamma}{\gamma} \left(\frac{11}{24} + \frac{\alpha - \gamma}{6\gamma} \Delta\right) \Delta^4 - \left(\frac{\alpha - \gamma}{\gamma}\right)^2 \frac{\Delta^5}{30}; \\ R &= \frac{\gamma - \alpha}{q} + \frac{(\alpha - \gamma)(1 - \Delta)}{q^2} \left(\varphi B - \frac{\alpha - \gamma}{\gamma}\right); \\ Q &= -\frac{(\alpha - \gamma)(1 - \Delta) \varphi}{q}; \ q = 1 + \frac{\alpha - \gamma}{\gamma} \Delta - \varphi \Phi (\Delta, \Delta); \\ J_2 &= R \left(\frac{\Delta^3}{2} + \frac{\alpha - \gamma}{3\gamma} \Delta^3 - \varphi A M\right) + Q \left[A' M + A \left[\frac{\Delta^2}{2} + \frac{\alpha - \gamma}{\gamma} \left(\frac{5}{6} + \frac{\alpha - \gamma}{3\gamma} \Delta\right) \Delta^3\right]\right]; \\ B &= (A' \Delta + A) \left\{1 + \frac{1}{2} \frac{\alpha - \gamma}{\gamma} \Delta + \frac{\alpha - \gamma}{\gamma} \left[\frac{\Delta}{2} \left(1 + \frac{\alpha - \gamma}{\gamma} \Delta\right) - \frac{\alpha - \gamma}{6\gamma} \Delta^3\right]\right\} + A \Delta \frac{\alpha - \gamma}{\gamma} \left[1 + \frac{2}{3} \frac{\alpha - \gamma}{\gamma} \Delta\right]; \\ C_1 &= \Delta^3 + \frac{\alpha - \gamma}{2\gamma} \Delta^3 + \frac{\alpha - \gamma}{\gamma} \left(\Delta + \frac{\alpha - \gamma}{2\gamma} \Delta^2\right) \frac{\Delta^3}{2} - \frac{\alpha - \gamma}{6\gamma} \Delta^3 - \left(\frac{\alpha - \gamma}{\gamma}\right)^2 \frac{\Delta^4}{24}; \ A' &= \frac{dA}{d\Delta}. \end{split}$$

Fig. 1. Thickness of a frozen ice layer as function of time ($\alpha = 10, \gamma = 1.5, \varphi = 0.4$): 0) $\Delta_0(\tau)$; 1) $\Delta_1(\tau)$; 2) $\Delta_2(\tau)$.

Calculated values of τ_0 , τ_1 , and τ_2 are shown in Fig. 1 for the case where $\alpha = 10$, $\gamma = 1.5$; $\varphi = 0.4$. It is evident here that between the second and the first approximation the maximum relative discrepancy in the results at $\tau = 15$ is half as large as that between the first and the zeroth approximation. Values of τ_2 as a function of Δ are given in Table 3 for several specific values of the governing parameters.

NOTATION

Т	is the temperature distribution;
х	is the space coordinate;
t	is the time;
δ	is the thickness of the frozen layer;
Тe	is the temperature of liquid;
T_{f}	is the temperature of phase transition;
Т	is the temperature of coolant;
ρ	is the density of ice;
c	is the specific heat of ice;
k	is the thermal conductivity of ice;
L	is the latent heat of fusion;
q_W	is the heat flux extracted from the wall;
hw	is the coefficient of heat transfer between wall and coolant;
he	is the coefficient of heat transfer between the liquid and the phase-transition surface;
D	is the region of the phase plane analyzed in the problem;
$\delta_{\mathbf{S}}$	is the maximum thickness of the frozen layer;
Z	is the characteristic linear dimension of the problem;
θ	is the dimensionless temperature distribution;
ξ	is the dimensionless space coordinate;
au	is the dimensionless time coordinate;
Δ	is the dimensionless thickness of the frozen layer;
α,β,γ,φ	are dimensionless parameters of the problem;
$\theta_0, \theta_1, \theta_2, \theta_3$	are dimensionless temperature distributions;
$\tau_0, \tau_1, \tau_2, \tau_3$	are the dimensionless times after the respective approximation.

LITERATURE CITED

- 1. I. I. Kolodner, Mekhanika, No. 1, 89 (1957).
- 2. G. A. Martynov, Zh. Tekh. Fiz., 25, No. 10, 1754 (1955).
- 3. I. G. Portnov, Dokl. Akad. Nauk SSSR, 143, No. 3, 559 (1962).
- 4. A. Friedman, Partial Differential Equations of the Parabolic Type [Russian translation], Mir, Moscow (1968).
- 5. G. A. Grinberg, Prikl. Matem. Mekhan., 31, No. 2, 193 (1967).
- 6. G. A. Grinberg, Zh. Tekh. Fiz., 37, No. 9, 1958 (1967).
- 7. A. M. Makarov, Inzh.-Fiz. Zh., 19, No. 1, 94 (1970).
- 8. I. M. Savino and R. Siegel, Internat. J. Heat and Mass Transfer, 12, 803 (1969).
- 9. V. A. Koss, Zh. Tekh. Fiz., 40, 7 (1970).